Effect of high intensity interval training under hypoxic conditions in a normobaric environment on moderately trained university students’ antioxidant status
DOI:
https://doi.org/10.15561/20755279.2019.0501Keywords:
interval training, superoxide dismutase, catalase, glutathione peroxidase, malondialdehydeAbstract
Purpose: The effects of high intensity interval exercises on antioxidant defence system are not clear. Since there is an evident lack of studies focused on oxidative stress in moderately trained males following high intensity interval training, we investigated oxidative stress markers (malondialdehyde [MDA], catalase [CAT], glutathione peroxidase [GPX], superoxide dismutase [SOD]) by completing a high intensity interval training program (HIITP) under hypoxic and normoxic conditions in a normobaric environment. Material: The study was carried out on moderately trained university students who had regular exercising habits. The participants completed 8-week wingate based high intensity interval training under normoxic and hypoxic conditions (2500 m.) in the normobaric environment. They were instructed to maintain their normal dietary practices during the study not to take any antioxidant containing vitamin tablets. Results: The interaction effect (time×group) for SOD (p=0.230), CAT (p=0.736), GPX (p=0.517), and MDA (p=0.596), revealed no significant change in repeated response. Conclusions: Although 8 weeks of high-intensity interval training significantly affected only SOD and GPX (p<0.05), the normoxic and hypoxic conditions did not present any significant change between treatments.Downloads
Download data is not yet available.
References
1. Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gender Medicine, 2008; 5(3): 218-228.
https://doi.org/10.1016/j.genm.2008.07.002
2. Gomez-Cabrera MC, Martinez A, Santangelo G, Pallard'o FV, Sastre J, Vina J. Oxidative stress in marathon runners: interest of antioxidant supplementation. The British Journal of Nutrition, 2006; 96(1): 31-33.
https://doi.org/10.1079/BJN20061696
3. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. American Journal of Medicine, 1991; 91(3): 14-22.
https://doi.org/10.1016/0002-9343(91)90279-7
4. Berzosa C, Cebrián I, Fuentes-Broto L, Gómez-Trullén E, Piedrafita E, Martínez-Ballarín E, et al. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men. Journal of Biomedicine and Biotechnology, 2011;2011:1–7.
https://doi.org/10.1155/2011/540458
5. Forsberg L, de Faire U, Morgenstern R. Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys, 2001; 389(1): 84-93.
https://doi.org/10.1006/abbi.2001.2295
6. Cooke M, Evans M, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003;17(10):1195-1214.
https://doi.org/10.1096/fj.02-0752rev
7. Banarje AK, Mandal A, Chanda D, Chakraborti S. Oxidant, antioxidant and physical exercise. Mol Cell Biochem, 2003; 253(1-2): 307-312.
https://doi.org/10.1023/A:1026032404105
8. Koska J, Blazicek P, Marko M, Grna JD, Kvetnansky R, Oigas M. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans. Physiol Res, 2000; 49(19): 95-100.
9. Ji LL. Free radicals and exercise: implication in health and fitness. J Exerc Sci Fitness, 2003; 1(1): 15-22.
10. Kanter M. Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc, 1988; 57(1): 9-13.
https://doi.org/10.1079/PNS19980004
11. Powers SK, Criswell D, Lawler J, Martin D, Lieu FK, Ji LL, Herb RA. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium. Am J Physial, 1993; 6(2) 2094-2098.
https://doi.org/10.1152/ajpheart.1993.265.6.H2094
12. Brugniaux JV, Rock E, Schmitt L, Richalet JP. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. European Journal of Nutrition, 49(5); 285-292.
https://doi.org/10.1007/s00394-009-0085-z
13. Barker AR, Day J, Smith A, Bond B, Williams CA. The influence of 2 weeks of low-volume high intensity interval training on healtj outcomes in adolescent boys. Journal of Sport Sciences, 2014; 32:(8):757-765.
https://doi.org/10.1080/02640414.2013.853132
14. Shing CM, Webb JJ, Driller MW, Williams AD, Fell JW. Circulating adiponectin concentration and body composition are altered in response to high intensity interval training. Jornal of Strength and Conditioning Research, 2013; 27(8): 2213-2218.
https://doi.org/10.1519/JSC.0b013e31827e1644
15. Greeley SJ, Martinez N, Campbell BI. The impact of high-intensity interval training on metabolic syndrome. Strength and Conditioning Journal, 2013;35(2): 63-65.
https://doi.org/10.1519/SSC.0b013e31827764da
16. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health ve disease. J Physiol, 2012; 590(5):1077-1084.
https://doi.org/10.1113/jphysiol.2011.224725
17. Metin G, Gumustas MK, Uslu E, Belce A, Kayserilioglu A. Effects of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol, 2003;46(1):35-39.
18. Bloomer RJ, Smith WA. Oxidative stress in response to aerobic and anaerobic power testing: Influence of exercise training and carnitine supplementation. Res Sports Med, 2009;17(1):1-16.
https://doi.org/10.1080/15438620802678289
19. Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T. Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med, 2007;12(5):202-208.
https://doi.org/10.1265/ehpm.12.202
20. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30-year history. Dyn Med, 2009;8(1):1-25.
https://doi.org/10.1186/1476-5918-8-1
21. Guoxiang Y, Gautam A, Andrew A. McCormick JJH, Ganesh KK, Nanduri RP. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol, 2004; 557(33):773-783.
https://doi.org/10. 1113/jphysiol. 2003. 058503
22. Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology, 2002;180(2):107-119.
https://doi.org/10.1016/S0300-483X(02)00385-2
23. Bailey DM, Davies B, Young IS. Evidence for reactive oxidant generation during acute physical exercise and normobaric hypoxia in men. J Physiol, 2000; 528-599.
24. Bailey DM, Davies B, Young IS. Intermittent hypoxia training implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci Lond, 2001;101(5): 465-475.
https://doi.org/10.1042/cs1010465
25. Moller P, Loft S, Lundby C, Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J, 2001; 15(7):1181-1186.
https://doi.org/10.1096/fj.00-0703com
26. Furman YM, Holovkina V, Salnykova S, Sulyma A, Brezdeniuk O, Korolchuk A, Nesterova S. Effect of swimming with the use of aqua fitness elements and interval hypoxic training on the physical fitness of boys aged 11-12 years. Pedagogics, psychology, medical-biological problems of physical training and sports. 2018;22(4):184-8.
https://doi.org/10.15561/18189172.2018.0403
27. Rodriguez FA, Murio J, Ventura JL. Effects of intermittent hypobaric hypoxia and altitude training on physiological and performance parameters in swimmers. Med Sci Sports Exerc, 2003;35(5):115.
https://doi.org/10.1097/00005768-200305001-00624
28. Rodriguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J Appl Physiol, 2007;103(5):1523-1535.
https://doi.org/10.1152/japplphysiol.01320.2006
29. Czuba M, Maszczyk A, Gerasimuk D, Roczniok R, Fidos-Czuba O, Zając A, et al. The effects of hypobaric hypoxia on erythropoiesis, maximal oxygen uptake and energy cost of exercise under normoxia in elite biathletes. JSSM, 2014;13(4):912-920.
30. Czuba M, Waskiewicz Z, Zajac A, Poprzecki S, Cholewa J, Roczniok R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med, 2011;10(1):175-183.
31. Poprzecki S, Czuba M, Zając A, Karpinski J, Wilk R, Bril G, Maszczyk A, Toborek M. The blood antioxidant defence capacity during intermittent hypoxic training in elite swimmers. Biol. Sport, 2016: 33(4):353-360.
https://doi.org/10.5604/20831862.1221607
32. Dahle LK, Hill EG, Holman RT. The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys, 1962; 98(2): 253-261.
https://doi.org/10.1016/0003-9861(62)90181-9
33. Durak İ, Canbolat O, Kavutcu M, Öztürk HS, Yurtarslanı Z. Activities of total, cytoplasmic and mitochondrial superoxide dismutase en¬zymes in sera and pleural fluids from patients with lung cancer. J Clin Lab Anal, 1996; 10(1): 17-20.
https://doi.org/10.1002/(SICI)1098-2825(1996)10:1<17::AID-JCLA4>3.3.CO;2-6
34. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med, 1967; 70(1): 158-169.
35. Aebi H. Catalase. In: Bergmayer HU, ed. Methods of Enzymatic Analysis. New York and London: Academic Press Inc, 1974: 673-677.
https://doi.org/10.1016/B978-0-12-091302-2.50032-3
36. Wadley AJ, Chen Y, Lip GYH, Fisher JP, Aldred S. Low volume high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. Journal of Sports Science, 2016;34(1);1-9.
https://doi.org/10.1080/02640414.2015.1035666
37. Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K, Grinton S. High intensity training induced changes in skeletal muscle antioxidant enzyme activity. Med. Sci. Sports and Exercise, 1993; 25(10):1135-1140.
https://doi.org/10.1249/00005768-199310000-00009
38. Ugras AF. Effect of high intensity interval training on elite athletes' antioxidant status. Sci Sports, 2013;28(5):253-259.
https://doi.org/10.1016/j.scispo.2012.04.009
39. Packer L, Cadenas E, Davies KJA. Free radicals and exercise: an introduction. Free Radic Biol Med, 2008; 44(2):123-125.
https://doi.org/10.1016/j.freeradbiomed.2007.05.031
40. Groussard C, Rannou-Bekono F, Machefer G, Chevanne M, Vincent S, Sergent O, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol, 2003;89(1):14-20.
https://doi.org/10.1007/s00421-002-0767-1
41. Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T. Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med, 2007;12(5):202-208.
https://doi.org/10.1265/ehpm.12.202
42. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30-year history. Dyn Med, 2009;8(1):1-25.
https://doi.org/10.1186/1476-5918-8-1
43. Kinnunen S, Atalay M, Hyypa S, Lehmuskero A, Hanninen O, Oksala N. Effects of prolonged exercise on oxidative stress and antioxidant defense in endurance horse. J Sports Sci Med, 2000; 4(4):415-421.
44. Wozniak A, Drewa G, Chesy G, Rakowski A, Rozwodowska M, Olszewska D. Effect of altitude training on the peroxidation and antioxidants enzymes in sportsmen. Med Sci Sports Exerc, 2001;33(7):1109-1113.
https://doi.org/10.1097/00005768-200107000-00007
45. Risby TH, Sehnert SS. Clinical application of breath biomarkers of oxidative stress status. Free Radic Biol Med, 1999;27(11-12):1182-1192.
https://doi.org/10.1016/S0891-5849(99)00212-9
46. Qiao D, Hou L, Liu X. Influence of intermittent anaerobic exercise on Mouse physical endurance and antioxidant components. Br J Sports Med, 2006;40(3):214-218.
https://doi.org/10.1136/bjsm.2005.020099
47. Gonzalez G, Celedon G, Escobar M, Sotomayor C, Ferrer V, Benitez D, Behn C. Red cell membrane lipid changes at 3, 500 m and on return to sea level. High Alt Med Biol, 2005;6(4):320-326.
https://doi.org/10.1089/ham.2005.6.320
48. Pialoux V, Mounier R, Ponsot E, Rock E, Mazur A, Dufour S, Richard R, Richalet JP, Coudert J, Fellmann N. Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur J Clin Nutr, 2006;60(12):1345-1354.
https://doi.org/10.1038/sj.ejcn.1602462
49. Urso ML, Clarkson PM. Oxidative stress, exercise and antioxidant supplementation. Toxicology, 2003;189(1-2):41-45.
https://doi.org/10.1016/S0300-483X(03)00151-3
https://doi.org/10.1016/j.genm.2008.07.002
2. Gomez-Cabrera MC, Martinez A, Santangelo G, Pallard'o FV, Sastre J, Vina J. Oxidative stress in marathon runners: interest of antioxidant supplementation. The British Journal of Nutrition, 2006; 96(1): 31-33.
https://doi.org/10.1079/BJN20061696
3. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. American Journal of Medicine, 1991; 91(3): 14-22.
https://doi.org/10.1016/0002-9343(91)90279-7
4. Berzosa C, Cebrián I, Fuentes-Broto L, Gómez-Trullén E, Piedrafita E, Martínez-Ballarín E, et al. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men. Journal of Biomedicine and Biotechnology, 2011;2011:1–7.
https://doi.org/10.1155/2011/540458
5. Forsberg L, de Faire U, Morgenstern R. Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys, 2001; 389(1): 84-93.
https://doi.org/10.1006/abbi.2001.2295
6. Cooke M, Evans M, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003;17(10):1195-1214.
https://doi.org/10.1096/fj.02-0752rev
7. Banarje AK, Mandal A, Chanda D, Chakraborti S. Oxidant, antioxidant and physical exercise. Mol Cell Biochem, 2003; 253(1-2): 307-312.
https://doi.org/10.1023/A:1026032404105
8. Koska J, Blazicek P, Marko M, Grna JD, Kvetnansky R, Oigas M. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans. Physiol Res, 2000; 49(19): 95-100.
9. Ji LL. Free radicals and exercise: implication in health and fitness. J Exerc Sci Fitness, 2003; 1(1): 15-22.
10. Kanter M. Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc, 1988; 57(1): 9-13.
https://doi.org/10.1079/PNS19980004
11. Powers SK, Criswell D, Lawler J, Martin D, Lieu FK, Ji LL, Herb RA. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium. Am J Physial, 1993; 6(2) 2094-2098.
https://doi.org/10.1152/ajpheart.1993.265.6.H2094
12. Brugniaux JV, Rock E, Schmitt L, Richalet JP. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. European Journal of Nutrition, 49(5); 285-292.
https://doi.org/10.1007/s00394-009-0085-z
13. Barker AR, Day J, Smith A, Bond B, Williams CA. The influence of 2 weeks of low-volume high intensity interval training on healtj outcomes in adolescent boys. Journal of Sport Sciences, 2014; 32:(8):757-765.
https://doi.org/10.1080/02640414.2013.853132
14. Shing CM, Webb JJ, Driller MW, Williams AD, Fell JW. Circulating adiponectin concentration and body composition are altered in response to high intensity interval training. Jornal of Strength and Conditioning Research, 2013; 27(8): 2213-2218.
https://doi.org/10.1519/JSC.0b013e31827e1644
15. Greeley SJ, Martinez N, Campbell BI. The impact of high-intensity interval training on metabolic syndrome. Strength and Conditioning Journal, 2013;35(2): 63-65.
https://doi.org/10.1519/SSC.0b013e31827764da
16. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health ve disease. J Physiol, 2012; 590(5):1077-1084.
https://doi.org/10.1113/jphysiol.2011.224725
17. Metin G, Gumustas MK, Uslu E, Belce A, Kayserilioglu A. Effects of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol, 2003;46(1):35-39.
18. Bloomer RJ, Smith WA. Oxidative stress in response to aerobic and anaerobic power testing: Influence of exercise training and carnitine supplementation. Res Sports Med, 2009;17(1):1-16.
https://doi.org/10.1080/15438620802678289
19. Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T. Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med, 2007;12(5):202-208.
https://doi.org/10.1265/ehpm.12.202
20. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30-year history. Dyn Med, 2009;8(1):1-25.
https://doi.org/10.1186/1476-5918-8-1
21. Guoxiang Y, Gautam A, Andrew A. McCormick JJH, Ganesh KK, Nanduri RP. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol, 2004; 557(33):773-783.
https://doi.org/10. 1113/jphysiol. 2003. 058503
22. Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology, 2002;180(2):107-119.
https://doi.org/10.1016/S0300-483X(02)00385-2
23. Bailey DM, Davies B, Young IS. Evidence for reactive oxidant generation during acute physical exercise and normobaric hypoxia in men. J Physiol, 2000; 528-599.
24. Bailey DM, Davies B, Young IS. Intermittent hypoxia training implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci Lond, 2001;101(5): 465-475.
https://doi.org/10.1042/cs1010465
25. Moller P, Loft S, Lundby C, Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J, 2001; 15(7):1181-1186.
https://doi.org/10.1096/fj.00-0703com
26. Furman YM, Holovkina V, Salnykova S, Sulyma A, Brezdeniuk O, Korolchuk A, Nesterova S. Effect of swimming with the use of aqua fitness elements and interval hypoxic training on the physical fitness of boys aged 11-12 years. Pedagogics, psychology, medical-biological problems of physical training and sports. 2018;22(4):184-8.
https://doi.org/10.15561/18189172.2018.0403
27. Rodriguez FA, Murio J, Ventura JL. Effects of intermittent hypobaric hypoxia and altitude training on physiological and performance parameters in swimmers. Med Sci Sports Exerc, 2003;35(5):115.
https://doi.org/10.1097/00005768-200305001-00624
28. Rodriguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD. Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J Appl Physiol, 2007;103(5):1523-1535.
https://doi.org/10.1152/japplphysiol.01320.2006
29. Czuba M, Maszczyk A, Gerasimuk D, Roczniok R, Fidos-Czuba O, Zając A, et al. The effects of hypobaric hypoxia on erythropoiesis, maximal oxygen uptake and energy cost of exercise under normoxia in elite biathletes. JSSM, 2014;13(4):912-920.
30. Czuba M, Waskiewicz Z, Zajac A, Poprzecki S, Cholewa J, Roczniok R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med, 2011;10(1):175-183.
31. Poprzecki S, Czuba M, Zając A, Karpinski J, Wilk R, Bril G, Maszczyk A, Toborek M. The blood antioxidant defence capacity during intermittent hypoxic training in elite swimmers. Biol. Sport, 2016: 33(4):353-360.
https://doi.org/10.5604/20831862.1221607
32. Dahle LK, Hill EG, Holman RT. The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys, 1962; 98(2): 253-261.
https://doi.org/10.1016/0003-9861(62)90181-9
33. Durak İ, Canbolat O, Kavutcu M, Öztürk HS, Yurtarslanı Z. Activities of total, cytoplasmic and mitochondrial superoxide dismutase en¬zymes in sera and pleural fluids from patients with lung cancer. J Clin Lab Anal, 1996; 10(1): 17-20.
https://doi.org/10.1002/(SICI)1098-2825(1996)10:1<17::AID-JCLA4>3.3.CO;2-6
34. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med, 1967; 70(1): 158-169.
35. Aebi H. Catalase. In: Bergmayer HU, ed. Methods of Enzymatic Analysis. New York and London: Academic Press Inc, 1974: 673-677.
https://doi.org/10.1016/B978-0-12-091302-2.50032-3
36. Wadley AJ, Chen Y, Lip GYH, Fisher JP, Aldred S. Low volume high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. Journal of Sports Science, 2016;34(1);1-9.
https://doi.org/10.1080/02640414.2015.1035666
37. Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K, Grinton S. High intensity training induced changes in skeletal muscle antioxidant enzyme activity. Med. Sci. Sports and Exercise, 1993; 25(10):1135-1140.
https://doi.org/10.1249/00005768-199310000-00009
38. Ugras AF. Effect of high intensity interval training on elite athletes' antioxidant status. Sci Sports, 2013;28(5):253-259.
https://doi.org/10.1016/j.scispo.2012.04.009
39. Packer L, Cadenas E, Davies KJA. Free radicals and exercise: an introduction. Free Radic Biol Med, 2008; 44(2):123-125.
https://doi.org/10.1016/j.freeradbiomed.2007.05.031
40. Groussard C, Rannou-Bekono F, Machefer G, Chevanne M, Vincent S, Sergent O, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol, 2003;89(1):14-20.
https://doi.org/10.1007/s00421-002-0767-1
41. Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T. Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med, 2007;12(5):202-208.
https://doi.org/10.1265/ehpm.12.202
42. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30-year history. Dyn Med, 2009;8(1):1-25.
https://doi.org/10.1186/1476-5918-8-1
43. Kinnunen S, Atalay M, Hyypa S, Lehmuskero A, Hanninen O, Oksala N. Effects of prolonged exercise on oxidative stress and antioxidant defense in endurance horse. J Sports Sci Med, 2000; 4(4):415-421.
44. Wozniak A, Drewa G, Chesy G, Rakowski A, Rozwodowska M, Olszewska D. Effect of altitude training on the peroxidation and antioxidants enzymes in sportsmen. Med Sci Sports Exerc, 2001;33(7):1109-1113.
https://doi.org/10.1097/00005768-200107000-00007
45. Risby TH, Sehnert SS. Clinical application of breath biomarkers of oxidative stress status. Free Radic Biol Med, 1999;27(11-12):1182-1192.
https://doi.org/10.1016/S0891-5849(99)00212-9
46. Qiao D, Hou L, Liu X. Influence of intermittent anaerobic exercise on Mouse physical endurance and antioxidant components. Br J Sports Med, 2006;40(3):214-218.
https://doi.org/10.1136/bjsm.2005.020099
47. Gonzalez G, Celedon G, Escobar M, Sotomayor C, Ferrer V, Benitez D, Behn C. Red cell membrane lipid changes at 3, 500 m and on return to sea level. High Alt Med Biol, 2005;6(4):320-326.
https://doi.org/10.1089/ham.2005.6.320
48. Pialoux V, Mounier R, Ponsot E, Rock E, Mazur A, Dufour S, Richard R, Richalet JP, Coudert J, Fellmann N. Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur J Clin Nutr, 2006;60(12):1345-1354.
https://doi.org/10.1038/sj.ejcn.1602462
49. Urso ML, Clarkson PM. Oxidative stress, exercise and antioxidant supplementation. Toxicology, 2003;189(1-2):41-45.
https://doi.org/10.1016/S0300-483X(03)00151-3
Downloads
Published
2019-10-26
How to Cite
1.
Akgul M, Koz M. Effect of high intensity interval training under hypoxic conditions in a normobaric environment on moderately trained university students’ antioxidant status. Physical Education of Students. 2019;23(5):217-22. https://doi.org/10.15561/20755279.2019.0501
Issue
License
Copyright Holder - Author(s). more
Statistics
Abstract views: 634 / PDF downloads: 553